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Abstrac t  

In this paper we develop a general method providing the relativistic equation of wave 
mechanics for the antiparticles within the frame of the "theory of the fusion" for part- 
icles with arbitrary values of spin (de Broglie, 1954). Such a method will enable us to 
discuss some fundamental differences between bosons and fermions. 

1. Fusion o f  Corpuscles 

To make acquaintance with the " theory o f  the fusion" easier for the reader 
we shall begin by writing the Dirac equation o f  the particle with spin 1, proper  
mass m, charge q, and moving in an electromagnetic field given by the potentials 
A, V, under the form 

[eop/c +Hop " ~ -  mca4]q~ = 0 ( i . 1 )  

where 

eop= (E - q V)o p = - ihO t - q V l-lop = [p - ((q/c)A)o p = il~ V -  (q /c )A  

(1.2) 
Our notat ion is standard: ~I, is a column matr ix with four components  and 

~t(ala2a3), a4 are four arbitrary Hermitian matrices,  with the only restriction 
being that  they obey the well-known conditions 

oeuoe v + a ~ u  = 26#v (/a, v = 1,2,3,4) (1.3) 

In the sequel we shall thus make use of  the following choice of  the %:  

ol-=('0 
1 On leave at the Fondation Louis de Broglie, Paris. 
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where a denotes the three Pauli matrices 

,:(0 i1 oil -:(10 
It is well known that the equations (1.1) describe as well the corresponding 

antiparticle, that is, with the same distinguishing physical constants except for 
the electric charge, which is now - q  instead of q. More precisely, the anti- 
particle is described by (t .1) with - q  in place ofq  and with a new wave function 
'I~ A whose components are unambiguously related to those of q~. It will be use- 
ful for our purposes to recall briefly the way one can get such relations: 
Taking (1.2) and (1.4) into account, the Dirac equation (1.1) then becomes 

(-ihOt-qV-mc2)(~:)-c(iliV-qA)'a(~]) =0 
me 2 t~3 

Let us now take the complex conjugate of the preceding equations. Since, 
according to (1.5), we have 

a *  = a r (1.6) 
we obtain 

m 2"[~l)*-c(-ihV-qA)'e*r[~3~*=O (i'hat - qV- c )~2 \~4] 

(ihat-qV+ rnc2)(;2)* -c(-ihv- qA)" aT{~'~*=O\~2] 
Again with (1.5) we may easily verify that 

02 ~T = ---~02 (1.7) 

so that, if we multiply our equations by %, we get 

(-ihOt+qV-mc2)[-o2[~3~*l\t~4 , j-c(ihV+qA)'•[o[ 2~ ~2)[~I'*] =0 

(-ihOt+qV+mc2)[a2(~:)*]-c( ihv+ cq-A) "[a2 (~2)*]  =0 

which are the Dirac equations we start from, with - q  instead of q and the 
wave function ~A =/31"P* instead of tI,, with 

(0 7) & = ( 1 . 8 )  

O2 
[According to (t .5), ~1 is not a Hermitian matrix but rather an anti-Hermitian 
one.] 
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After this brief digression about a well-known result of  the theory of  the 
particle with spin ½, we shall now introduce the equations of  the particle of  
arbitrary spin or, more exactly, o f  maximum spin n/2 (n a positive integer). 
These will appear to bear an undeniable formal resemblance to those of  Dirac, 
but the wave function has now a greater number o f  components (4 n for the 
case of  the "fusion" of  n corpuscles o f  spin ½, thus giving rise to a Particle 
with maximum value of  spin n/2) ,  and the matrices appearing in the equations 
are now 4 n x 4 n matrices defined by means of  Dirac's %.  To put it clearly, 
let us write (1.1) in the form 

- imc ~t' = 0 (1.9) 

where 7u (~ = 1, 2, 3, 4) are the four von Neumann matrices 

and 

Y = i~4a, 74 = a4 (1.10) 

P .  = p .  - ( q / c ) ¢ ,  

is a combination o f  the two 4-vectors 

(1.11) 

Pu = ih3~ (x 4 = ict)  (1.12) 

Cu = [A, iV] (1.13) 

Now the equations of  the particle of  proper mass m and electric charge q, 
arising from the "fusion" of  n Dirac corpuscles that is, a particle that is able 
to assume any one of  the values n/2,  n/2-1,  n/2-2 . . . . .  [1 - ( - 1 )  n ] /4  of  the 
spin have a form similar to that of  (1.9): 

[ ~= P.p. - ~ m c ~ =  0] (1.14) 

In this equation, P u has the meaning of(1.11) .  As for the qs, it is a column 
matrix with 4 n elements (instead o f  4, as was the case in Dirac's theory), and 
the Pu are four 4 n x 4 n matrices defined by means of  the 7u's (and thus of  the 
c%'s) in the following way: 

f 
P, = ( 1 / n ) [ ( % , x  1 x - .  • x 1)  + (1 x 7 ,  x . . .  x I )  + - . .  + ( I  x 1 x -  • .  x ";,,~)], 

(V = 1,2,  3, 4) (1.15) 

In this formula 1 is the identity matrix 4 x 4 and A x B denotes the exterior 
product of  matrices A = (air) and B = (bit) which is a matrix obtained by 
replacing in A the element a/~ by the matrix aikB. Evidently, A x B 4= B x A 
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and (A x B) x C = A x (B x C) = A x B x C. We recall some more properties 
of  this definition that will be needed later: 

(a) A x (kB) = (kA)  x B = k(A x B) (k const) 

(b) (A 1 x A  2 x . - -  xAp) (B  1 x B  2 x . . -  x B p ) = ( A t B 1 ) x ( A 2 B z ) x (  -. . )  
x (ApBp) (1.16) 

(c) (A 1 x A2 x.  • • x Ap) 7" = A 1T x A27" x •. • A f t  (the symbol T 
denotes the transpose of a matrix) 

Thus (1.14) and (1.15) provide the relativistic equations of  the particle of  
charge q, proper mass m, and spin maximum n/2, arising from the "fusion" of  
n corpuscles of  Dirac. These equations have been given (de Broglie, 1954; 
Petiau, 1953) for the case of  non charged particles. The generalization we give 
here seems in all ways natural and will enable us to describe the particle as weI1 
as the antiparticle. The original aim of de Broglie with the theory of  fusion 
was the theory of light (de Broglie, 1934, I952),  but soon the method was 
developed for arbitrary values of  spin (de Broglie, 1954; Petiau, 1947, 1952). 

2. Antiparticles and Spin Maximum t 

To start with, let us study the case of  the fusion of  two corpuscles of  Dirac. 
The equations of  the particle of  spin maximum i and charge q are given by 
(1.14) and (1.15) with n = 2. The wave function q~ is now a column matrix 
with 42 = 16 components that may be labeled as follows 

XI/T = (l]/11i~12~13l~/141~21i~22 " ' "  t~/43@44) (2.1) 

According to (1.10) and (1 . I6b)  matrices P, now take the form 

P=(i/2)[(o~ 4 x 1 ) ( a x  1 )+ (1  x c~4)(1 x~)] ,  P4 =½[(c~4 x 1)+(1 xc~4) ] 

At this stage we are going to introduce a usual and very useful notation 
in the theory of fusion, by defining the following matrices: 

a u = c~, x 1, b u = 1 x c% (U = 1, 2, 3, 4) (2.2) 

With this notation we have 

P = (i/2)(a4a + b4b ), P4 = ½(a4 + b4) 

so that the equations of  the charged particle with spin maximum 1 can be 
written 

The properties of  the matrices a .  and b .  are similar to those of  the ~..  In fact, 
one may easily verify by means of (2.2), (1.15b), and (1.3) that 

aubv=b~qu, a~av+ava u =bubv+bvbu=26,v (/l, v = 1 ,2 ,3 ,4 )  

(2.4) 



BOSONS, FERMIONS, AND THE FESHBACH-VILLARS TRANSFORMATION 151 

According to this, if we now multiply (2.3) on the left by a4b4, we get 

1 
[ ; (-ih~r - q V)(a4 + b4) + ~ (ih V - q A) " (ab4 + a4b) - mca4b4 ] qJ = O 

(2.5) 
Though (2.3) and (2.5) are obviously mathematically equivalent, the preceding 
form is the more suitable for our aims since all the matrices appearing in it are 
Hermitian, which is not the case o f a 4 a  + b4b in (2.3). 

Starting from (2.5) let us now search the equations of the corresponding 
antiparticlel Taking the complex conjugate we get 

[ l (ih~r - q V)(a4 + b4)* + l (-il~ V -  q A) - (ab4 + a4b)* - mca:b: ] Vg* = O 

Let us now assume that a matrix 16 x 16,/32, exists such that 

/32 (a4 + b4)* = - (a4  + b4)/32 

/32 (ab 4 + a4b)* = - ( a b  4 + a4b)/32 (2.6) 

3 *b* 2a4 4 = a4b4/32 

If  one multiplies our equations by/32 they become 

[ l (-ih3t + q V)(a4 + b4) + l (ih V + q A)" (ab4 + a4b) - mca4b 4] /32 q** = O 

which are precisely the equations we start from, with q replaced by - q  and g, 
by/32q;* So all we must do is to find a matrix/32 fulfilling the conditions required 
above. We are going to show that 

~2 =/31 x/31 
where/31 is the 4 x 4 matrix we met already in the Dirac theory and defined in 
(1.8). We may start by demonstrating some properties of the matrix/31 that 
wilt be needed later. We have, by (1.4) and (1.6)-(1.8), 

',-*-(.7 ..7):( ° :)(°7 °:) 
";)(: :1)=(: 7)(o° 

In short, 
/31=* = =*/31 /31~ = - ~ 1  (2.7) 

The preceding formulas enable us to prove (2.6). In fact, by means of (1.16b) 
and (2.2), we get 

&(a~  + b~) = ( /31~ x ~1) + (/31 × / 3 1 ~ )  . . . . .  (~4/3, x/31) - (~1 x ~4~)  

= - [ ( a 4  x 1) + (1 x a4)] (/3a x/31) = -(au + bu)~2 
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and, similarly, 

fl2(ab4 + a4b)* = (/~l~t * x ~ic~) + (/Jlo~,~ x/31~* ) = -(0t/31 x o~4/J1) - (0~4/31 x/31) 

= -[Oxx 1)(1 x 0d4) - -  (0~ 4 X 1)(1 X ")](ill X/31) = -(ab4 + a4b)CJ:~ 

132a4b 4 =/310 ~ x fl10e,~ = a4/31 x oe4fl 1 = (a 4 x t)(1 x a4)(/31 x ~1) 

= a4b4/~ 2 

in total agreement with (2.6). It then follows from the preceding demonstration 
that if (2.5) describes the particle of spin maximum 1, mass m, and charge q, 
the same equation with q replaced by - q  and ~I, by 

% = &,I,* = (~a x ~ ) ~ *  (2.8) 

describes the antiparticle. According to (1.5), (1.8), and (2.1) is follows that 
the whole theory of the antiparticle of spin maximum 1 can be obtained from 
the theory of the corresponding particle by simply replacing q by - q  and the 
components ffik of if" in (2.t) by 

 AT= 

- ~ ,  ¢~3, ~ , - ¢ ~ ' 1 )  (2.9) 

3. The General Case 

The same result can still be domonstrated in the general case of the fusion 
of n corpuscles of spin ½, as we are now going to show. The equations of the 
particle of spin maximum n/2 are given by (1.1 4). According to (1• 1 0), (1.1 5), 
and (1.16b), matrices Pu now take the form 

i 
P = - [ ( a 4  x 1 x . . .  x 1 ) ( G t x  1 x .  • • x 1 )  + ( 1  x a 4 X "  " " X 1 ) ( 1  X "1 X " " • X 1 )  

n 

+ ' ' ' + ( 1  X'''XO~4)(I X' ' 'XOt)] 

Pn =(1/n)[(aax 1 x ' ' ' x l ) + ( 1  x a 4 x ' - - x  1 ) + ' - ' + ( 1  x ' ' ' x o t 4 )  ] 

Formulas (2.2) now obviously suggest the following definitions: 

a~ = a u x  1 x 1 x , - ' x  i 

b ~ = l  x o ~ x l x . - - x l  

c~ =1 x l  x ~ , x . . . x l  / ~=1 ,2 ,3 ,4  (3.1) 

h ~ = l x l x l x ' " x ~  
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Here again we may ascertain without difficulties that the properties of  the 
au, b . ,  • • ", h~ are very similar to those of  the Dirac's %. More precisely, 

auav + ava u = b~bv + bvb u . . . . .  h~hv + hvh u = 26~v (3.2) 

aub v = bvau, aue v = cvau, bucv = Cvbu, etc. 

The matrices appearing in the equations are then 

P = ( 1 / n ) ( a 4 a  + b4b + " "  + h4h) P4 = (1 /n ) (a4  + I)4 + " "  + h4) 

and the equations themselves take the form 

"1 

- m ¢  [ • = 0 (3.3) 

where "t, is a column matrix with 4 n components. Multiplying on the left by 
a 4 6 4 ¢  4 " " " h 4 ,  w e  get, according to (3.2), 

1 
nee ( - - ih3t  -- qV) (b4c4  ' " " ha +~4c4" ' " h4 + '  " "+a4b4" ' "ga) 

+(ill  - c q  A ) "  l (ab4c4" " h4 +a4bc4" " h 4  +* " + a 4 b 4 "  " h ) - - m c a 4 b 4  " " h4]  ~ 

(3.4) 
In order to obtain from these equations those of  the associated antiparticle, 

we take their complex conjugate and multiply on the left by a 4 n x 4 n matrix, 
fin, such that 

[3n(b4c4"'" ]74 +a4c4" " ' h4 + " "  +a4b4"" "g4)* = kn(b4c4" ' "  h4 + " "  + a4b4"'"  g4)/~n 

/3n(ab4¢4""h 4 + a 4 b c 4 " " h  4 + - " + a 4 b 4 . "  h ) * = k n ( a b 4 " ' h  4 + . . , + a 4 b 4 . . , h ) ~  n 

(3.s) 

(Jn(a4b4 " " " h4)* = - k n ( a 4 b 4  . * " h4)(J n 

where kn is a constant to be determined. If such a/3 n exists then the equations 
(3.4) go into the form 

[-~c ( - i h O t  + q V)(b4c4 " " h4 + " " + a4b4 " " g4) 

+ V +  " n ( a b 4 c 4 " "  ha + ' ' ' + a 4 b 4 " ' ' h ) - m c a 4 b a ' ' ' h 4  ~ n ~ *  = 0  

which is the original form of  the equations with q replaced by - q  and ,/s by 

~A = fin ~I'* (3.6) 



154 PEREIRA 

The relativistic equations of  the particle of  spin maximum n/2 and charge q 
thus allow us to obtain those of  the antiparticle. It still remains to find fin 
fulfilling the conditions (3.5). It can easily be seen that 

J3n = t31 x/31 x" " " x/31 (3.7) 
.) 

v - - -  
I n  fact, n 

* * X * /3n(b4c4 "'" h4 + 1 4 c 4 "  " " h4  + " "  + 1 4 b 4 "  "" g4)*  =(/31 x/310-~4 x/31°t4 x . . ,  fllO~4) 

+ (/3,~ x/3, x/3~,d, × . . .  x/3,~*,) + . . .  + ( /3~ ×/31~ x . . .  x/31) 
According to (2.7) this amounts to saying that 

( - 1 )  n - l [ ( 1  x ~ 4 x " "  x l ) ( 1  x l x ~  4 x - . .  x I ) - ' . ( 1  x l x . - ,  x % )  

+ (% x 1 x . . - x  1)(1 x 1 x %  x . - - x  1)- . - (1  x 1 x - . . x a 4 ) + - - -  

+ ( %  x I x . . .  x 1)(1 x %  x - . . x  1)-- - (1  x 1 x . - . x %  x 1)1 (Ha x~I x. .-x/31) 

= ( - 1 ) n - t ( b 4 c 4 " " h 4  + 14c4"'" h4 +14b4"'"  g4)/3n 

By a similar calculation one could ascertain that 

/ 3 n ( R b 4 c 4  " " " h4 + a4bc4 " " "h4 + • " • + 14b4"" " h)* 

= ( -1 )n - I (ab4  " " h 4  + " "  +a4b4 • " " h)fln 

Finally, we have 

/3n(a464 ' ' '  h4)* * - " c~ . . .  x a4 /31)  =/31o:~ x ~1'~2 × " "  x / 3 1 a 4  - ( - 1 )  ( d l  × o~4/31 x 

= (-1)n(a4 x 1 x - ' - x  1)(1 X0~4X . . . .  x 1 ) ' " ( 1  x ' " x a 4 )  

x (/31 x& x ' "x /30 

= ( -  1)na4b4c4"" "h4f n 

We thus have proved that the conditions (3.5) are fulfilled by/3n given by 
(3.7) and 

k.  = ( - 1 )  " - 1  (3.S) 

4. Probability Density and Probability Current Vector o f  the Antiparticles 

As is well known, (1.1) allows us to establish an equation of  the form 

3no + V - j  = 0 (4.1) 

with 

p = ~ + ~  j = - C ~ + C x ~  
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(,4 + obviously means A'T). The theory of Dirac assigns to p and j the physical 
meaning of a probability density and a probability current vector, p and j 
are real and since p is positive definite, one may expect that the same will happen 
with the probability density of the antiparticle. In fact, we have 

As has been pointed out above,/51 is an anti-Hermitian matrix, that is, 

/57 = --~1 (4.2) 

besides, we have, according to (1.8), 

~3t 2 = -1  (4.3) 

The expression of PA then becomes 

PA = --~ItT/~12a~s* = a'It+~I = ,0 

If we consider the probability current vector j we get for the antiparticle 

JA = --C(~l'd£tt*) +~ (~1 ~It*) = --Cqff T~'~/~1 * * 

By means of (2.7), (4.2), and (4.3) we obtain 

JA = - - c ~ T o I % *  = --¢(~t+~tIt) * = j 

Thus in the theory of Dirac the probability density and current vector have 
the same values for the particle and for the antiparticle. The probability density 
is then positive definite in both cases. It will become clear in the sequel that 
that fact is inherent in the Hamiltonian structure of the field equations; there- 
fore it may not happen when dealing with particles obtained by fusion of 
several corpuscles of Dirac, whose equations, as we have seen, are not of the 
form ih~tqy = Hqz.  Besides, if, on one hand, they still allow us to define p and 
j obeying the continuity equation (4.1), the other hand is no longer positive 
definite. [About the physical meaning to be given to a "probability" density 
that is not positive definite see de Broglie (1954, 1963). We do not discuss 
this problem here.] In fact, and taking the simple case o fn  = 2 (fusion of two 
corpuscles), one could easily verify that the equations (2.5) of the particle 
with maximum spin 1 imply an equation of continuity (4. I) with 

P = ~I'+~ + b4 ~, j = - c q  j+ab4 + a4b'-I' (4.4) 
2 2 

Since the matrices entering in these expressions are Hermitian, p and j are real. 
Nevertheless, we see that p is not positive definite. What are now the relations 
between the values o fp  and j for the particle and the antiparticle? We have, by 
means of (2.6) and (2.8), 

,I, Tc4+ a4 + b4 o ,T,* ,rrTa+a [ a4 + b4~ qd* 
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NOW (2.8), (4.2), and (4.3) imply 

and Pa then becomes 

The same happens with j, by making use of (2.6): 

_c([32~*) + ab4 + a4b ([j2gt*) = c~T[3"~[j2(ab4 2a4b)*,,Is* = _ j 
J A =  2 

Such a result is not surprising. One has but to remember that when we take the 
equation of  Klein-Gordon with a single component  wave function ,Is to 
describe the particle with spin 0 (which is, in the theory of  the fusion, one of  
the two possible realizations of  the particle with maximmn spin 1), the same 
equation with q and 'I~ replaced by - q  and ~ *  then describes the antiparticle. 
Hence PA = --P and jA = --J (they are obviously not positive definite). 

From the above results we may predict what will happen in the fusion of  
an arbitrary number of  Dirac corpuscles. Let us take, for instance, the case of  
the fusion of  three corpuscles, giving rise to a particle whose spin may have one 
of the two values 3/2 or 1/2; since the resulting particle may thus be the Dirac 
corpuscle itself for which, as we have seen, the relations PA = P, jA = j are valid 
we may then expect the same property to be valid for a particle of  maximum 
spin 3/2. The same can be said for the case of  a fusion of  an odd number of  
Dirac corpuscles since in this case there is always, among the possible values 
of  the spin of  the resulting particle, the value ½. This must then be an essential 
feature of  the particles with half-integer spin. The preceding considerations 
can be easily transposed to the case of  a fusion of  an even number of  Dirac 
corpuscles. In this case, the unity is always one of  the possible values of the 
spin of  the particle arising from the fusion and since for that value we have 
PA = --P, jA = --J it is likely enough that the same must be true for the 
general case o f n  odd. In order to verify what we have said, we may begin by 
remarking that we have 

/3 + = (-1)nfln, /3n z = ( - 1 )  n (4.5) 

which is an immediate consequence of  (3.7), (4.2), and (4.3). Now it follows 
from the general equations (3.4) of  the particle with maximum spin n / 2  that 
an equation of  continuity (4.1) is valid with the following real expressions for 
p and j: 

P = 1 , i t+ (b4c4  " . . h4  + a4c4 . , ,  h4 + . . .  + a464 . . ,  g 4 ) t i  r 
n 

c 
j = - - ~+(ab4 " • • h 4  + a 4 b "  " " h4 + " "  + a4b4"'" h)q; 

n 

(4.6) 
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For the corresponding antiparticle we get, by means of (3.5), (3.6), and (4.5), 

1 
PA = - * A ( b 4 c 4  " " h4  + " " + a4b4 " " g 4 ) *  = 1-- gtTJ3+( " " " ) f i n * *  

n n 

1 + = _ , T  3 ~ 3 n  ( . . . ) * * *  = 1 ) * * *  

n k n  n--kn ~ T ( . . .  

that is, according to (3.8), 

( - - 1 )  n - 1  
PA - - -  ( " I t + (  . . .  ) ~ I 0 "  = ( - - 1 ) n - - l P  

In a similar way, we find for jA 

JA = . . . . . . .  C ~It~ ( a b 4  . . . h 4  + + a4b4 " h)~A = - -  £ xtztT~+( " ""  ) f n  ~ld* 
n n 

c i,r~+,~,(...),,v,= C(_l)n_l(,+ (.7. - - - ) ' , I , ) *  = ( - 1 ) n - l j  
n ~ n 

In brief, we have 

PA = (--l)n-lP, JA = ( -1)n- l j  (4.7) 

The theory of the fusion thus assigns to bosons and antibosons symmetric 
values for the expressions of the probability density and the probability 
current vector, while for fermions and antifermions such values are the same. 

5 .  S p i n  Z e r o  

To close the considerations of the preceding paragraphs we want to point 
out some aspects of the theory of the spin-0 particle as it appears given by the 
method of the fusion (that is, for instance, as one of the possible cases of the 
fusion of two Dirac corpuscles) and as it is also often envisaged, that is, as a 
consequence of a field equation with Hamiltonian form (Feshbach and Villars, 
1958). 

Before entering into the subject let us recall that in the general theory of 
the fusion of n corpuscles of spin ½ with the field equations (3.4) it is always 
possible to define unambiguously certain simple linear combinations of the 
4 n spinorial components ~ik of the wave function qz (we denote such express- 
ions by ~a), such that the field equations written with the ~a become separated, 
that is, more precisely, the system of equations (3.4) theh divide up in a 
certain number of subsystems such that the field variables ~a appearing in each 
one of these subsystems do not appear in any of the others. Each of these 
independent subsystems (with the field variables of its own) then describes a 
unique particle corresponding to one and only one of the possible values of 
the spin: n / 2 ,  n / 2  - 1 . . . . .  [t - ( - 1 )  n]/4. We may perhaps add that i fn is 
even (odd) the ~a are tensorial (spinofial) variables. It can then be shown that 
any physical observable [in particular, 0 and j given by (4.6)], when written 
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in the new variables Ca, become separated as well, that is, the expression of 
any observable is then given by the sum of several terms, each one being a 
function of those Ca associated to one of the possible values of the spin 
arising in the fusion. For example, and taking the simple case o fp  and n = 2, 
we have 

p ( ~ )  = p ( ~ ( ~ ) )  -- p~(~2) + po(~ ° )  

where p ( ~ )  has the expression (4.6) and Ca 1 and ~po denote the tensorial 
field variables describing the particle of spin 1 and that of spin 0. It seems 
then justified to say, as is usual in the fusion method, that the theory of a 
particle with only one of the possible values of the spin allowed by the fusion 
of n Dirac corpuscles is then obtained from the general theory of  the particle 
with maximum spin n/2 by there setting equal to zero all the field variables 
~a corresponding to the other values of the spin and thus keeping only the 
~a concerning the value of the spin we intend. The preceding and somewhat 
compact considerations have been presented and treated in detail (de Broglie, 
1952, 1954) and we do not develop them here. 

Now it can be seen (we omit this easy but tedious calculation) that the 
theory of the particle with spin maximum 1 assigns to the particle of spin 0 
five field variables Ca [each one being a well-defined simple linear function 
of the ~ik of (2.1)] : an invariant I and a 4-vector [S, iS4] obeying the 
following equations (x 4 = ict): 

(eop/C)I + mcS 4 = 0, l'lopI + mcS = 0 
(5.1) 

IIop " S - (eop/c)S4 = mcI 

[the operators are those defined in (1.2)]. Equations (5.1) are linear, symmetric 
(that is, with derivatives of first order in space and time), and non-Hamiltonian, 
and the existence of five field variables points to some interesting consequences: 
If we had no physical reasons to make use of the 3-vector S, that is, if the 
theory had only two field variables (I and $4), and equations (5.1) had the 
form 

(eop/C)I = -mc2~4 (5.2) 

copS 4 + (II~p/m)I + me2[ = 0 

(with derivatives of second order in space and first order in time), they would 
then have the Hamiltonian form. In order to put them into a more symmetrical 
form we may define 

so that (5.2) becomes 

I -S4  ~+s4 

2-m~°3 + i °2 )+mc2cr3 -  e°P X2 =0 
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where a2, o 3 are Pauli matrices (1.5). This is precisely what is usually done 
(Feshbach and Villars, 1958). But in this case it is easily seen that p = --PA 
J = + JA, in contrast to what happens when, as is the case in the method of  
fusion, the theory imposes the non-Hamiltonian form of  the field equations 
and the introduction of  an additional 3-vector S tied to S 4 by means of  the 
4-vector [S, iS4]. 

Moreover, according to equations (5.1), the method of  fusion provides a 
justification for the purely formal procedure of  making use of  other field 
variables in order to give to the Klein-Gordon equation, 

[e2p/C 2 --IIo2p -- m2e2 ]'-P = 0 (5.3) 

( ~  is a wave function with a single component) ,  the form 

[IIop " / 3 + i  ] c fl4e°p + imc  q~ = 0 (5.4) 

where • is a column matrix with five components.  In the preceding equation 
/3,/34 are the four well-known Kemmer-Pet iau matrices [(/3a)lS = (/31)s~ = (/32)2s = 
(/52)s2 = (fi3)as = (fi3)s3 = (f14)s4 = (t54)4s, other elements null]. The transition 
from (5.3) to (5.4) is accomplished by introducing the 4-vector [~, ¢a4], 

W = ( i /mc)I lop  ~ ~4 = - ( l / m e  2 )eop '~ 

and we have 

~T = (~1~=¢3~4'~) 

Now it is evident that equations (5.1) are precisely those of Kemmer-Pet iau 
with the notations "-P = / , " I  t = - iS ,  ~4 = $4. It is still evident that equations 
(5.4) with q replaced by - q  and (~1ff2ff3ff4~) by ( f f ~ ' f f ~ -  ~ I ' )  describe 
the antiparticle, and since they imply an equation of  continutity (4.1) with 

ih .~...,.+ 
h ~ * ~ 4 + c . c -  j = - ~ w  'V c.c. 

P = -2m-~ 

(c.c. means complex conjugate), we have p = -£4 ,  j = --jA. 
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